

Documentation

[image: _images/opossum-readme.png]
opmuse is a web application to play, organize, share and make your music library social.

These pages document development of opmuse. If you want to use opmuse you
should go to the opmuse website [http://opmu.se/]. If you actually want to develop you can
start by reading Contributing. Then you can take a look at
Getting Started for instructions on how to setup an environment etc.

Other Resources

	opmuse website [http://opmu.se/].

	GitHub repository [https://github.com/opmuse/opmuse].

	GitHub issue tracker [https://github.com/opmuse/opmuse/issues].

	#opmuse at OFTC [https://webchat.oftc.net/?randomnick=1&channels=opmuse&prompt=1&uio=MT11bmRlZmluZWQb1].

	opmuse on Twitter [https://twitter.com/opmuse].

	opmuse on Open Hub [https://www.openhub.net/p/opmuse].

Index

	Contributing
	Code style

	Git

	Getting Started
	Docker

	Requirements

	Install

	Upgrading

	Testing
	Regular tests

	Controller tests

	Setup APT Repo
	Using

Indices and tables

	Index

	Module Index

	Search Page

Contributing

Here’s some rules that should be followed and things to think about when
contributing code to opmuse.

Code style

Coding styles for the different languages we use. One thing to keep in mind for
all of these is that readability is more important than convention and
convention is more important than performance.

Python

We use PEP8 [http://www.python.org/dev/peps/pep-0008] but we have a max line length of 120 chars, though we try to keep
the lines at around 80 chars.

Javascript

For Javascript we follow a style based on the Crockford code conventions [http://javascript.crockford.com/code.html]
with a few extra rules and exceptions.

	Lines shouldn’t be longer than 120 chars but try to keep them at around 80 chars.

	Everything should be a requirejs module.

	Singleton requirejs modules should be lowercase.

	Class requirejs modules should start with uppercase.

	requirejs dependencies should be declared on seperate lines

	‘use strict’ should be used.

Here’s a simple example.

define([
 'module1',
 'module2',
], function (module1, module2) {

 'use strict';

 // code
});

Jinja

As there really isn’t any good Jinja style checkers or even style guides out
there just try to think like PEP8 when coding Jinja. Use 4 spaces for
indentation, maximum line length of 120 chars but try to keep them at around 80
chars. Also, indent both HTML tags and Jinja control structures.

Here’s a simple example.

 {% for item in items %}

 {{ item.name }}

 {% endfor %}

Less & CSS

Here’s some guidelines to follow for Less and CSS.

	4 spaces for indentation

	Max line length of 120 chars but try to keep them at around 80 chars

	Curly brackets on same line as selector

	Seperate selectors with comma AND newline.

Here’s a simple example.

ul li,
dl dt {
 margin: 0;
 padding: 0;
}

Shell script

Use 4 spaces, max line length of 120 chars but try to keep them at around 80
chars.

Git

Try to follow this style guide [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html] when writing commit messages.

Getting Started

Docker

You can use the opmuse-dev docker image for development.

This will get a copy of the repo from the docker image and mount it inside the container.

$ docker export $(docker run -d inty/opmuse-dev) | tar xf - root/opmuse --strip-components=1
$ cd opmuse
$ docker run -d -p 8080:8080 --name=opmuse-dev -v `pwd`:/root/opmuse inty/opmuse-dev

To get cherrypy’s output do this

$ docker logs -f opmuse-dev

To get a shell

$ docker exec -it opmuse-dev /bin/bash

Requirements

You need Python 3.5, ffmpeg, ImageMagick, nodejs, npm,
yarn, rsync and a Linux environment. This has only been tested on
Debian and Exherbo but most other Linux distros should do as well as other
similar *nix OSes. If you’re on Windows you’re on your own.

Install

$ git clone https://github.com/opmuse/opmuse.git
$ cd opmuse
$ virtualenv -p python3 ./virtualenv
$ source virtualenv/bin/activate
$ pip install -r requirements.txt
$ yarn
$ yarn build:dev
$ cp config/opmuse.dist.ini config/opmuse.ini
$ edit config/opmuse.ini # fix library.path

If you just want to use SQLite.

$./console database create

If you want to use MySQL instead of SQLite (MySQL is recommended).

$ pip install -r mysql-requirements.txt
$ edit config/opmuse.ini # fix database.url
$./console database create

If you want some additional dev tools and stuff (repoze.profile, colorlog), install ‘em

$ source virtualenv/bin/activate
$ pip install -r dev-requirements.txt
$./console cherrypy -- -p # start with repoze.profile (access it at /__profile__)

You probably want fixtures for some default data (an admin account with password admin for one).

$./console database fixtures

Then you start the whole debacle with

$./console cherrypy

Upgrading

When you do a git pull some of these might be required.

$ merge config/opmuse.dist.ini config/opmuse.ini

$ source virtualenv/bin/activate
$ pip install --upgrade -r requirements.txt
$ pip install --upgrade -r mysql-requirements.txt
$ pip install --upgrade -r dev-requirements.txt
$ yarn
$ yarn build:dev
$./console database reset # will initiate rescan, might not be required
$./console database update

Testing

We use pytest [https://pytest.readthedocs.io/] to run and write our tests. This is how we run the tests,
assuming you’ve setup a dev environment according to Getting Started
first.

$ pip install -r dev-requirements.txt
$ pytest opmuse/test/

Regular tests

First we have regular tests for services and utilities. They’re just plain test
classes optionally with some setup and teardown methods for the database and
such.

Controller tests

Second we have controller tests that utilizes cherrypy’s test framework to test
controllers.

Setup APT Repo

These docs show you how to setup an APT repo for opmuse with reprepro and build
opmuse’s .deb packages. It is done in the inty/opmuse-build docker image here but
can of course be done anywhere that has the right stuff.

$ cd /srv/opmuse
$ git pull # or whatever to get the new code
$ source virtualenv/bin/activate
$ pip install -r requirements.txt
$ deactivate
$ yarn

Optionally set the lastfm key and secret.

$ python3 setup.py setopt --command global --option lastfm.key --set-value KEY
$ python3 setup.py setopt --command global --option lastfm.secret --set-value SECRET

Start the build

$./scripts/build-debs.sh /srv/repo buster --debug

Using

You can test it out like this

$ apt-get update --allow-insecure-repositories
$ apt-get install opmuse --allow-unauthenticated

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Contributing

 		
 Code style

 		
 Python

 		
 Javascript

 		
 Jinja

 		
 Less & CSS

 		
 Shell script

 		
 Git

 		
 Getting Started

 		
 Docker

 		
 Requirements

 		
 Install

 		
 Upgrading

 		
 Testing

 		
 Regular tests

 		
 Controller tests

 		
 Setup APT Repo

 		
 Using

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/opossum-readme.png

_static/comment-bright.png

